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We show that manipulation by a spatial profile of refractive index of a circularly symmetric 
dielectric cavity results in a novel way of fine tuning frequency separations as well as spatial local- 
izations of high-Q whispering gallery modes excited in the cavity. The method enables dispersion 
compensation in the modes (spectrum equalization), diminishes the the quality-factor limitation by 
surface roughness and contamination, and enables critical coupling to ultra-high-Q modes without 
maintaining an air-gap with evanescent couplers. 

I. I N T R O D U C T I O N  

Optical cavities consisting of two or more mirrors are 
utilized in all branches of modern linear and nonlinear 
optics. Practical usage of such cavities is technically 
restricted, especially when high performance of the de- 
vices, i.e. high quality factor and high mode stability, 
is important. Fabrication of good optical mirrors, their 
alinement, and binding are rather expensive and difficult 
tasks. 

Open dielectric microcavities may become an alterna- 
tive for usual optical cavities. Fabrication of these mi- 
crocavities is rather simple and inexpensive. The cav- 
ities demonstrate high mode stability and high quality 
factors. High-Q optical microcavities with whispering- 
gallery modes (WGM) [l-41 are already in the core 
of many evolving photonics applications such as high- 
stability narrow linewidth microlasers [5-151, high reso- 
lution spectroscopy, remote sensing, and opto-electronic 
oscillators [16-221, to optical memory devices,true-time 
optical delay lines, and optical switching devices [23-271. 

However, there are significant differences between 
properties of open dielectric microcavities and conven- 
tional optical cavities constructed of mirrors. Originally 
proposed spherical whispering gallery mode microcavi- 
ties (microspheres) are over-moded, with complex quasi- 
periodic spectrum and unequal mode spacings translat- 
ing from both material and cavity dispersion. Signifi- 
cant reduction in the mode spectral density is achieved 
in highly oblate spheroidal microcavity (microtorus) [28], 
but still current fabrication technologies cannot produce 
dielectric microcavities with equidistant spectra. 

Performance and range of applications based on WGM 
microcavities will be significantly expanded if a method 
is found to make microcavity modes equally spaced with 
precision corresponding t20 a fraction of the resonance 
bandwidth. Such a dielectric microcavity with equidis- 
tant mode spectrum is similar to the Fabry-Perot res- 
onator. A dielectric cavity with equidistant spectrum 
may be used, for example, in frequency comb generators, 
optical pulse generators, broad band energy storage cir- 
cuits of electro-optical devices, and in other applications 
where conventional optical cavities are utilized. 

Within current technology based on uniform resonator 

material, the smaller is the cavity size, the more the cav- 
ity dispersion is manifested in unequal spectral separa- 
tion between adjacent modes. The problem is rooted 
in the fact that the radial distribution of whispering 
gallery resonant modes is frequency dependent. Higher 
frequency modes propagate on paths that are slightly 
closer to the surface than those of lower frequency modes. 
Thus, higher frequency modes travel in trajectories of 
slightly larger radius, and slightly longer optical path 
lengths. 

Optical path length is a function of both the physical 
distance and the index of refraction. We propose to fab- 
ricate a cavity out of a cylindrically symmetric material 
whose index decreases in the radial direction. With the 
proper choice of a gradient of the refractive index circular 
trajectories corresponding to  WGM at different frequen- 
cies will have identical optical path lengths. This results 
in equidistant mode spectrum of the cavity. 

We show that mode confinement is also changed in a 
cavity made from a graded-index material [29]. The po- 
sition of the maximum of the field of each mode shifts 
toward the cavity center, mode volumes are increased 
and displaced away from the surface, thereby desensitiz- 
ing the quality factor from the effects of surface contam- 
ination and roughness. Both these effects are identified 
currently as the main factor preventing the improvement 
of Q towards the fundamental limit imposed by bulk ma- 
terial attenuation. Therefore we predict a substantial 
increase of the mode quality factor in graded index cavi- 
ties. 

Finally, "burying" the mode volume well inside the res- 
onator helps to address the technical problem of main- 
taining the tunnelling gap between high-Q WGM cavity 
and evanescent wave coupler device. With appropriate 
engineering, critical coupling will be obtained under full 
mechanical contact with the coupler. 

11. W H I S P E R I N G  GALLERY MODES: BASICS 

Let us consider a dielectric sphere with dielectric con- 
stant distribution c(r) which depends on the radius r 
only. The electric field in the sphere obeys to the Maxwell 
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equation 

E(r) d2E 
c2 at2 

V x (V xE)+ -- = O ,  

where c is the speed of light in the vacuum. Presenting 
the electric field as E = Joi" dwe(r) exp(-iwt), we rewrite 
the above equation as 

v x (V x e) - k2e(r)e  = 0, (2) 

where k = w / c  is the wave vector. Eq.(2) may be solved 
in terms of T E  and TM modes. Taking in mind that 
V . (€e)  = 0 we write 

where radial functions Q and stand for TE and TM 
modes respectively, Y,,,, are vector spherical functions 
with angular number v and magnetic number m. It worth 
noting that modes of an infinite dielectric cylinder may 
be described in a similar way. 

Radial field distribution for TE modes [30] of a di- 
electric cavity (sphere or cylinder) can be described by 
equation 

where v is angular momentum number (v = 0 , 1 , 2 , 3 , .  . . 
for a sphere, v = 1 /2 ,3 /2 ,5 /2 , .  . . for an infinite cylin- 
der). Electric field distribution has a dependence Q ( r ) / r  
for a sphere, and ! P ( r ) / f i  for a cylinder. 

Equation (4) has an exact solution for homogeneous 
dielectric cavity ~ ( r )  = EO = const. This solution reads 
Q(r) = Jv+1/2(kr), where Jv+l/2(k~) is the Bessel func- 
tion of the first kind. The mode spectrum is determined 
by the boundary conditions Q(r)  + 0 for r + 03 and 0, 
where R is the radius of the sphere or cylinder. In the 
case of high mode order u >> 1 

equation (4) and of the approximate equation ( 6 )  shows 
that the solution of ( 6 )  gives satisfactory results for the 
eigenvalues as well as eigenfunctions of the exact prob- 
lem. 

To describe dispersion of the modes we compare a value 
equal to the ratio of frequency separations between two 
pairs of neighboring modes and the mode width. The 
number of equidistant modes in the case of large u can 
be estimated as 

From Eq. (5) we derive 

(7) 

y g / 3  
Nl 1.2 -. 

Q 
The mode dispersion can be very high for realistic condi- 
tions. For example, for v = lo3 cavity modes can already 
be treated as un-equidistant for Q 2 lo8. Keeping in 
mind that maximum achieved quality factor for a whis- 
pering gallery mode is 9 x lo9 [3] one can see that the 
dispersion problem is in fact quite important. 

(8) 

111. WHISPERING GALLERY MODES IN A 
CAVITY MADE OF A GRADED DIELECTRIC 

A. Dispersion compensation for the main mode 
sequence 

Let us now study the mode spectrum of a dielectric 
cavity with spatially distributed refractive index 

E ( ? - )  = E o  + €'(R - 7.). (9) 

We show in the following that choosing ratio between 
constants EO and E' in an appropriate way one is able to 
suppress the mode dispersion significantly. 

Exact analytical solutions of Eq.(4) with ~ ( r )  deter- 
1 

R f i  
(qnined by (9) is rather difficult to  obtain. We'therefore 

simplify the problem by assuming that the radius of the 
cavity is large enough R >> A, where X is optical wave- 
ength in the material. In this case v >> 1 and almost all 

the energy of the mode is confined nearby the surface of 
the cavity in a layer having a thickness - R v - ~ / ~ .  Intro- 
ducing r' = R - r we decompose Eq.(4) assuming that 
1 >> r ' [ R  

g+ [ ( k 2 F o  - 7 

IC,, = - 

where uq is the qth root of the Airy function, Ai(-z),  
which is equal t o  2.338, 4.088, and 5.521 for = 1,2,3,  
respectively [31]. 

The first order approximation for the mode eigenfunc- 
tions and eigenvalues may be found from the solution of 
an approximate equation (10) 

This equation has an exact solution 
u(v + 1) 2v(v ") Q = 0, (6) 

R3 
- r' 

RZ 
Q,(r') = Qq,0Ai 

where we assume that v >> 1, r' = R - r ,  !P(O> = *(R) = 
(11) 0. Comparison of the numerical solution of the exact 
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where Qq,0 is the field amplitude, k,  is the root of the 
equation 

It is easy to see that Eq.(12) gives a close approximation 
of the first two terms of the decomposition (5) if c’ = 0. 
For nonzero E’ we get 

The number of equidistant modes for the cavity can be 
found from (7) and (13) 

y8/3 R €1 -2/3 

Nz N 1.2 - (1 - y--) . (14) Q 
Therefore, if E’ + ~ E O / R  the cavity has, to  the first order, 
an equidistant frequency spectrum. Our numerical solu- 
tion of the exact problem, presented in Fig.1, confirms 
the results derived from the analytical solution. 

B. Dispersion compensation for the radial mode 
spectrum 

Surprisingly, except for v-dispersion compensation, a 
graded material cavity demonstrates radial dispersion 
compensation (index q)  Fig.2. This happens because 
modes do not encounter the cavity boundaries for large 
refractive index gradients, but only the potential dip cre- 
ated due to the gradient. As a consequence, radial pro- 
files of cavity modes are nearly symmetrical, much in the 
same way as harmonic oscillator wave functions (see inset 
of Fig. 2). 

This conclusion follows from complex angular momen- 
tum theory [32]. In this theory an analogy between optics 
and mechanics is utilized and the cavity modes are de- 
scribed as eigenvalues of an effective potential U. For 
the whispering gallery modes with index Y this potential 
may be written as a sum of an attractive wall of depth 
( c ( T )  - l )k2  with the centrifugal potential V(Y + 1) /T2 .  

The potential is asymmetric when E does not depend 
on radius T inside the sphere (see Fig.3, solid line). In the 
spheres possessing dielectric susceptibilities increasing to 
the sphere center the potential pocket broadens, shifts 
into the the cavity, and becomes more symmetric. The 
minimum of the potential is still on the sphere surface. 
For the critical value of the susceptibility gradient the 
potential resembles a half of the oscillatory potential U N 

( T -  R ) 2 J r + . ~ - ~  (see Fig.3, short dash). For the gradients 
beyond the critical value the minimum of the potential 
moves into the cavity. The deeper is the minimum of the 
potential the better it can be described by the oscillatory 
potential (Fig.3, long dash). 

C .  Engineering the cavity field distribution for 
improving mode quality factors 

The gradient in the index of refraction affects the field 
distribution in the cavity. By increasing E’,  we push the 
whispering-gallery modes further into the resonator (11) 
Fig.4. This might greatly reduce the losses caused by sur- 
face defects such as dust or scratches. The change of the 
mode geometry also changes cavity radiative losses [29]. 
However, because radiative losses are usually insignifi- 
cant compared with the losses due to surface scattering, 
we do not consider radiative losses here. 

Moreover, an efficient coupling with whispering gallery 
modes may be achieved by a prism or fiber coupler that is 
in a physical contact with the dielectric cavity. This may 
significantly simplify usage of whispering gallery mode 
cavities outside a laboratory. Such a contact usually 
overloads the modes of a dielectric cavity and results in 
a significant broadening of the resonances. However, by 
engineering the profile of the dielectric susceptibility gra- 
dient we reduce the evanescent field of the cavity in such 
a way that the coupling is still possible but influence of 
the surface contamination is greatly suppressed. 

Usually the quality factor of a WGM is determined 
by three effects: absorption in the material, Qm, surface 
scattering losses, Qss, and loading by the external cou- 
pler, QI. The load quality factor can be regulated from 
outside. It depends on the distance, d, from the coupling 
prism to the sphere surface as follows 

where X is the mode wavelength. The critical (optimum) 
coupling with the mode is achieved if d is chosen such that 
Qi = (1/QSs + l/Qm)-’. Because usually Qm >> Q,,, 
one neglects by the absorption of the material. 

Both Q,, and Q1 are proportional t o  the ratio of the 
field power on the surface of the cavity and the total en- 
ergy of the mode [33]. In other words, one can present 
the power of the losses because of the surface scattering 
and because of the coupler as P,, = PE(T = R)’ and 
Pr = aE(r = R)2,  respectively, where a is a geometrical 
factor that depends on the shape and the dielectric con- 
stants of a coupler and a thin surface layer where WGM 
is localized, and on the distance between the coupler and 
the cavity surface; p depends on geometry of the surface 
inhomogeneities and their optical parameters, E(T = R) 
is the amplitude of the electric field on the cavity surface. 

The quality factor may be determined as Ql,,, = 
W/(Pr,ssT), where W is the energy stored in the mode, 
and T is the oscillation period. By changing the profile 
of the index of refraction E ( T )  we change ratio W/E(T = 
R)2 but Qr/Qss  stays unchanged. Therefore, choosing 
Ql/Qss = 112 and reducing the absorption due to the 
surface scattering via engineering cavity index of refrac- 
tion such that Qss = &,, we may reach both the critical 
coupling and the maximum index of refraction. Max- 
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imum achievable quality factors for silica microspheres 
are about Qm = 10" [33]. 

For instance, to estimate the increase of the quality 
factors with the index gradient it is convenient to  use 
a simple ratio. Let us consider two identical spherical 
microcavities except that the susceptibility of one cavity 
is constant EO and the susceptibility of the other is space 
dependent E ( T )  (E(R)  = E O ) .  The ratio of the quality 
factors of the cavities is 

where Ql and Qs, (a1 and ass) are the quality factors 
due to  loading and surface scattering for the cavity with 
constant (graded) susceptibility, S(r )  - E(r)  is the field 
distribution of a TE  mode of the graded cavity. The 
less is the field on the surface of the dielectric cavity 
!@(r = R) (the deeper is the mode localization) the less 
is the absorption and coupling, and higher the quality 
factors. The dependence is shown in Fig.5. 

Finally, let us consider a situation when a coupling 
prism is in a full contact with the dielectric cavity (d = 0). 
The coupling losses exceed the surface scattering losses 
in this case. We may increase &1 changing E ( T )  until the 
bulk optical losses become equal to the coupling losses. 
At this point we have critical coupling but at much higher 
Q-factor level. 

It worth noting here, that in some cases it is important 
to  increase evanescent field of a dielectric cavity, not to 
decrease it, as we discussed above. For example, if the 
cavity is intended to be used as an optical sensor. This 
problem also may be managed via a manipulation of ~ ( r )  
dependence. It has been shown that whispering gallery 
modes tend to  be closer to the cavity surface if the index 
of refraction of the cavity close to its surface exceeds the 
internal index of refraction [as]. Such dependence of the 
refractive index will increase the surface absorption, but 
also it will increase the coupling to the external space. 

D. Numerical simulations 

Our approximation 1 >> r ' /R  breaks down for E' + 
2~o/R,  so we are unable to infer the extend of the dis- 
persion compensation and reshaping of the mode from 
this analytical calculations. Our exact numerical simula- 
tions show that the approximate analytical solution gives 
rather satisfactory results for the gradients less than the 
critical value. 

Let us now solve the exact equation (4) with boundary 
conditions S ( r  = 0) = 0 and S(r  ca) = 0 numer- 
ically. The result is presented in Fig.1 and Fig.2. The 
second order dispersion vs gradient of the refractive index 
is shown in Fig.1. This dispersion determines the number 
of equidistant modes N (7). It is easy to see a good corre- 
spondence between the eigenvalues of the exact equation 

(4) (solid lines) and the first order approximation of this 
equation (10) (dashed lines). It is important to  note that 
in the region E' 2 2~0/R,  where Eq.10 is not valid, the 
second order dispersion becomes negative. This allows 
for compensation of the dispersion of the cavity host ma- 
terial which is not taken into account in our calculations. 
Except for the complete compensation point in the vicin- 
ity of E' = ~ E O / R ,  the dispersion decreases and reaches 
minimum of a half percent of the initial value for large 
gradients. 

E. Suggestions for the implementation 

It is not necessary to produce a cavity that has a gra- 
dient of the index of refraction in the entire cavity. The 
modes of the cavity are localized in the vicinity of the 
cavity surface (Fig.4). Therefore, the gradient may be 
localized in the vicinity of the surface as well. 

For example, if we build a spherical cavity of 500 pm in 
radius from an optically homogeneous material and study 
modes with u = lo3 and quality factor Q = lo8, the 
mode spectrum is completely not equidistant. In turn, if 
the same cavity is fabricated from a graded material with 
E ' / E  x 40 cm-' gradient of index in the vicinity of the 
cavity boundary AR x 5 pm, at  least a hundred modes 
of the cavity can be treated as equidistant. 

For example, there are multimode fibers with ger- 
manium doped core (6 x 1.5) and pure silica clad 
(6 x 1.45). Originally the fiber has step-like depen- 
dence of the refractive index on the radius. Heating of 
the fiber results in diffusion of the Ge ions into the clad. 
This results in formation of the gradient in the refractive 
index. 

Let us consider, for example, a fiber with 1 mm core di- 
ameter and 8 pm clad. In this case the gradient is closed 
to the critical one after thermal diffusion is realized. 

On the other hand we may create a sphere from a high 
index flint glass (6 x 1.7) and cover it with fluoride 
glass (6 x 1.4). Subsequent thermalization will allow 
us to create gradients that even exceed critical one in 
thick surface layer. 

IV. CONCLUSION 

In conclusion, we have demonstrated that a number of 
important advantages can be achieved with a whispering- 
gallery mode microcavity fabricated from a material with 
graded index of refraction. Graded index material is 
widely available in the form of lenses and fibers. Such ma- 
terial can be formed into microcavities with standard me- 
chanical and thermal fusion techniques. Main advantage 
of graded-index microcavity is that the spectrum of res- 
onant frequencies is equidistant to first order. Secondly, 
the mode field is pushed away in a controlled way from 
the hni.indary to inside thc dielectric, thereby deimin- 
sihing the detrimental effect of surface roughness and 
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contamination. Finally, appropriately engineered near- 
surface gradient will eliminate the need for adjustable 
(and unstable) air gap between the  WGM microcavity 
and  evanescent coupler. This approach will be  a major 
enhancement for a variety of applications, and a signifi- 
cant breaktrhrough enabling simple packaging solutions 
for practical devices. We expect t h a t  ultra-high-Q micro- 
cavities based on gradient-index approach, will not only 
enhance the performance and  expand t h e  range of ap- 
plications, bu t  provide a critical step towards their wide 
acceptance as a novel building block of modern photon- 
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FIG. 2: Dependence of wave vector eigenvalues on nor- 
malized gradient of the index of refraction E‘RIa for u M 600. 
Modes with different q become closer with gradient increase. 
The modes pushed far away from the cavity boundary are 
nearly equidistant. Inset: Amplitude profile for the fields for 
large index gradients. The mode wave-functions are nearly 
symmetric. 

I I r \  I 

FIG. 3: Effective optical potential U for a transparent dielec- 
tric resonator with radius R. Solid line stands for E ( T )  =const 
(R > T ) ;  short dash - for E ( T )  = E o ( 3  - 2r /R)  (critical gradi- 
ent), long dash - for E ( T )  = ~ 0 ( 5  - 4r /R) .  
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r=O r=R 

r=O. 9R r=R 

FIG. 4: Radial dependencies of the susceptibility of a cavity 
material as well as of the amplitude profiles of the field (q  = 1) 
inside the cavity for various E'. Top plot shows rea1 scale 
for the filed distributions in case vo = 600. The fields are 
localized close to the cavity surface. The bottom plot shows 
the amplitude profiles in detail. Curve (1) of the bottom plot 
corresponds to E I R / E O  = 0, (2) ~ ' R / E o  = 1, (3) EIR/cO = 2, 
and (4) E'R/EO = 2.4. It is easy to observe pushing of the 
mode out of the cavity boundary ( r  = R) and into the cavity. 
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FIG. 5: Quality factor of a cavity with a gradient of the 
refractive index normalized by the quality factor Q of a cavity 
of the same radius without the gradient vs normalized gradi- 
ent of the refractive index. The plot is created for a cavity 
with radius R = 4 mm, susceptibility EO = 2.1, and the mode 
wavelength X = 1.55 pm. 




